| 0=0000 | 8=1000 | | ---- | ---- | | 1=0001 | 9=1001 | | 2=0010 | A=1010 | | 3=0011 | B=1011 | | 4=0100 | C=1100 | | 5=0101 | D=1101 | | 6=0110 | E=1110 | | 7=0111 | F=1111 | | *Input Bit A* | *Input Bit B* | *Output Bit* | | ---- | ---- | ---- | | 0 | 0 | **0** | | 0 | 1 | **1** | | 1 | 0 | **1** | | 1 | 1 | **0** | **GF(2<sup>8</sup>) $ m(x)=x^{8}+x^{4}+x^{3}+x+1\:.$ *Addition* - Use bitwise operation **Multiplication** - 1-bit left shift $ \left(b_{6}b_{5}b_{4}b_{3}b_{2}b_{1}b_{0}0\right)\mathrm{if}b_{7}=0$ - 1-bit left shift $ \left(b_{6}b_{5}b_{4}b_{3}b_{2}b_{1}b_{0}0\right)\oplus\left(00011011\right)\mathrm{if}b_{7}=1$ **The XOR bit pattern (0001 1011) corresponds to** $ \begin{aligned}m(x)-x^8&=x^8+x^4+x^3+x+1-x^8\\&=x^4+x^3+x+1\end{aligned}$